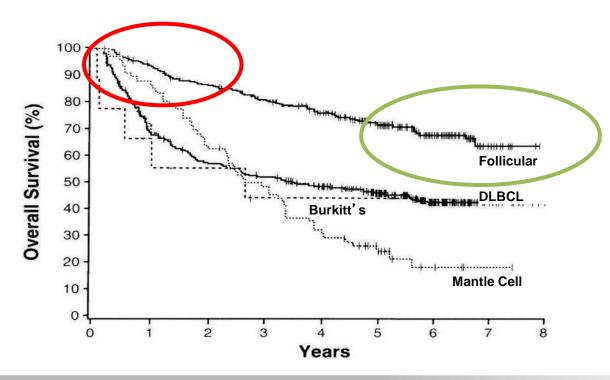
Turin, September 21-22, 2023 Starhotels Majestic Scientific board: Marco Ladetto (Alessandria) Umberto Vitolo (Candiolo-TO)

HOW I TREAT HIGH-RISK FL IN FIRST LINE

Simone Ferrero, MD

Division of Hematology, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino (Italy)

UNIVERSITÀ DI TORINO

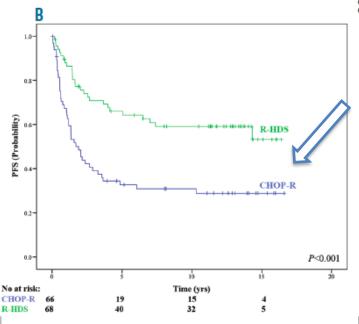

FONDAZIO

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Janssen	x		x		x	х	
EUSA Pharma			x		x	x	
Morphosys	x						
Incyte						x	
Gilead	x						
Servier					x		
Gentili					x		
Roche					x		
Sandoz			x				
Beigene	x						
Italfarmaco						x	
Abbvie			x				

Turin, September 21-22, 2023 Starhotels Majestic

Introduction

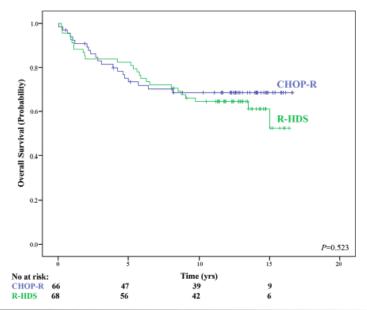
FL is a heterogeneous disease


Turin, September 21-22, 2023 Starhotels Majestic

The International Lymphoma Study Group. Blood 1997

3rd edition

Unmet challenges in high risk hematological malignancies: from benchside to clinical practice


Haematologica 2019 Volume 104(11):2241-2248

Prolonged survival in the absence of disease-recurrence in advanced-stage follicular lymphoma following chemo-immunotherapy: 13-year update of the prospective, multicenter randomized GITMO-IIL trial

Riccardo Bruna,¹⁸ Fabio Benedetti,² Carola Boccomini,³ Caterina Patti,⁴ Anna Maria Barbui,⁵ Alessandro Pulsoni,⁶ Maurizio Musso,⁷ Anna Marina Liberati,⁸ Guido Gini,⁹ Claudia Castellino,¹⁰ Fausto Rossini,¹¹ Fabio Ciceri,¹² Delia Rota-Scalabrini,¹³ Caterina Stelitano,⁴⁴ Francesco Di Raimondo,¹⁵ Alessandra Tucci,¹⁶ Liliana Devizzi,¹⁷ Valerio Zoli,¹⁶ Francesco Zallio,¹³ Franco Narni,²⁰ Alessandra Dondi,²¹ Guido Parvis,^{22*} Gianpietro Semenzato,²³ Francesco Lanza,²⁴ Tommasina Perrone,³⁵ Francesco Angrilli,²⁶ Atto Billio,²⁷ Angela Guelli,¹ Barbara Mantoan,²⁸ Alessandro Rambaldi,^{5,29} Alessandro Massimo Gianni,¹ Paolo Corradini,^{17,29} Roberto Passera,³⁰ Marco Ladetto,¹⁹

Introduction

Turin, September 21-22, 2023 Starhotels Majestic

Bruna R. et al., Haematologica 2019

VOLUME 33 · NUMBER 23 · AUGUST 10 2015

JOURNAL OF CLINICAL ONCOLOGY

Early Relapse of Follicular Lymphoma After Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone Defines Patients at High Risk for Death: An Analysis From the National LymphoCare Study

Carla Casulo, Michelle Byrtek, Keith L. Dawson, Xiaolei Zhou, Charles M. Farber, Christopher R. Flowers, John D. Hainsworth, Matthew J. Maurer, James R. Cerhan, Brian K. Link, Andrew D. Zelenetz, and Jonathan W. Friedberg

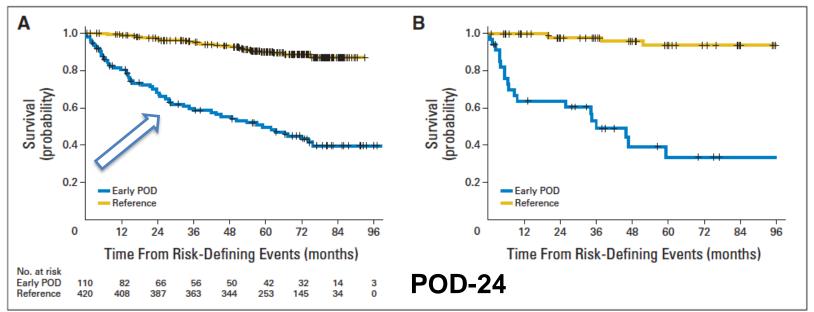
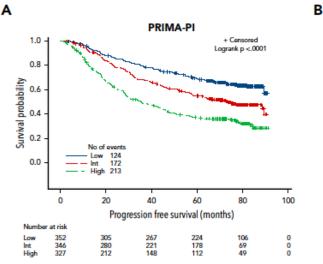
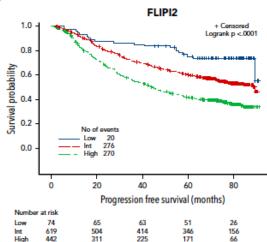




Fig 3. (A) Overall survival (OS) from a risk-defining event after diagnosis in patients who received rituximab with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) chemotherapy in the National LymphoCare Study group. Patients with early progression of disease (POD) had poor survival. Two-year OS was 68% (95% CI, 58.2% to 76.3%). Five-year OS was 50% (95% CI, 39.4% to 59.2%). OS in the reference group was 97% (95% CI, 94.6% to 98.1%) at 2 years and 90% (95% CI 86.2% to 92.4%) at 5 years. (B) Patients in the validation set who received R-CHOP with early POD also had inferior OS.

Follicular lymphoma in 2023

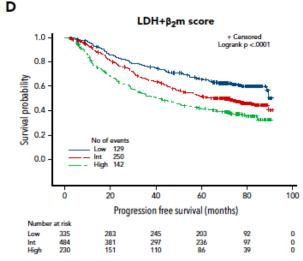
- Excellent outcome of advanced FL with available therapies (10-yrs OS 82%)
- 70-80% of patients have manageable FL
 - Consider the less toxic approach
 - Avoid late events
 - Some patients are actually cured (old, low risk... 30%?)
- 20-30% have high risk disease
 - Early identification (How?)
 - Consider experimental treatments
 - Reduce the rate of high risk patients
 - Overcome the dismal outcome of high risk patients
- <u>Risk-adapted strategy seems appropriate: how and which?</u>



Introduction

Clinical prognostic scores

(both classical and new...)



100

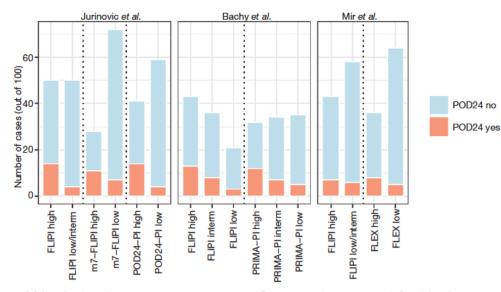
0

0

0

6 blood 2018 132: 49-58 doi:10.1182/blood-2017-11-816405 originally published online April 17, 2018

A simplified scoring system in de novo follicular lymphoma treated initially with immunochemotherapy


Emmanuel Bachy, Matthew J. Maurer, Thomas M. Habermann, Bénédicte Gelas-Dore, Delphine Maucort-Boulch, Jane A. Estell, Eric Van den Neste, Réda Bouabdallah, Emmanuel Gyan, Andrew L. Feldman, Joan Bargay, Alain Delmer, Susan L. Slager, Maria Gomes da Silva, Olivier Fitoussi, David Belada, Hervé Maisonneuve, Tanin Intragumtornchai, Stephen M. Ansell, Thierry Lamy, Peggy Dartigues, Brian K. Link, John F. Seymour, James R. Cerhan and Gilles Salles

Review Article

Predicting early progression in follicular lymphoma

Qin Liu¹, Anjali Silva^{1,2}, Robert Kridel^{1,3,4}

Ann Lymphoma 2021 | http://dx.doi.org/10.21037/aol-20-46

Neither of the available indices has thus far had a definitive role in altering clinical management, mostly because their accuracy to identify high-risk situations remains imperfect

Figure 1 Number of follicular lymphoma patients experiencing POD24 in risk categories defined by the FLIPI, the m7-FLIPI, the POD24-PI, the PRIMA-PI or the FLEX scores. As the reported studies had varying sample sizes, the numbers shown here were normalized to represent numbers of patients out of 100. For each study, only the results from the training cohorts are shown. In Jurinovic *et al.*, POD24 was defined as progression or relapse within 24 months of first-line treatment (15). Bachy *et al.* reported EFS24, defined as event-free survival within 24 months of diagnosis (26). Mir *et al.* defined POD24 as progression or disease-related death within 24 months of randomization (29).

Turin, September 21-22, 2023 Starhotels Majestic

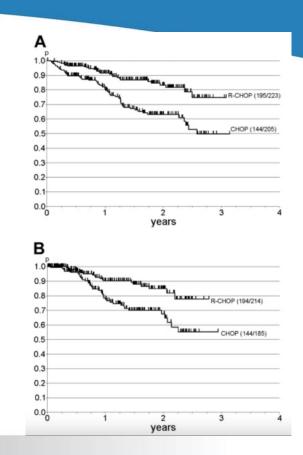
OK but... which treatment?

Study	Total number of patients	Median follow-up (months)	Overall response (%)	Time to treatment failure (months)	Overall survival (%)
	or patients	(months)	response (%)		
Marcus et al. 2008 ²¹					
R-CVP	159	53	81 (P < 0.0001)	27 (P < 0.0001)	83 (4 years) (P = 0.029)
Hiddemann et al. 2005 ²²					
R-CHOP	223	58	96	NR (P < 0.001)	90 (2 years) (P = 0.0493)
Herold et al. 2007 ²³					
R-MCP	105	48	92 $(P = 0.0009)$	NR (P < 0.0001)	87 (4 years) (P = 0.0096)
Bachy et al. 2013 ²⁴					
R-CHVP-IFN	175	99	81 (P = 0.035)	66 (P = 0.0004)	79 (8 years) (P = 0.076)
Rummel et al. 2017 ^{26,37}			(r = 0.033)	(r = 0.0004)	(r = 0.070)
BR	139	34	93	78 (median)	NR (median)
BR + R maintenance	595	34	90	NR (median)	NR (median)
Luminari et al. 2018 ²⁷					
R-CVP	178	84	88	38%	85%
R-CHOP	178	84	93	45% (P = 0.033)	83% (n.s.)
R-FM + R maintenance	178	84	91	49% (P = 0.016) (8 years)	79% (n.s.) (8 years)
Bachy et al. 2019 ³⁵					
R-CHOP/CVP/FM	1018	118	n/a	35% (10 years)	80 (10 years)
R-CHOP/CVP/FM				51% (10 years)	80 (10 years)
+ R maintenance				(P < 0.001)	(n.s.)
Marcus et al. 2017 ²⁹					
R-CHOP/CVP/B	601	34	86.9	73.3% (3 years)	92.1 (3 years)
+ R maintenance					
G-CHOP/CVP/B	601	34	88.5	80.0% (3 years)	94.0 (3 years)
+ G maintenance				(P = 0.001)	(n.s.)
Morschhauser et al. 2018 ³⁰					
R-CHOP/BR	547	20		700/ (2	04 (2
+ R maintenance R-lenalidomide	517	38	84	78% (3 years)	94 (3 years)
+ R maintenance	513	38	89	77% (3 years)	94 (3 years)
, it maintenance	515		35	(n.s.)	(n.s.)

Turin, September 21-22, 2023 Starhotels Majestic

Dreyling M et al, Ann Oncol. 2021 Mar;32(3):298-308

- Currently available therapies in first line
- PET-guided first line
- Biomarkers-driven first line (*EZH2*, MRD)
- Novel approaches in first line


Anti-CD20: when it all begun...

S blood

Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group

Wolfgang Hiddemann, Michael Kneba, Martin Dreyling, Norbert Schmitz, Eva Lengfelder, Rudolf Schmits, Marcel Reiser, Bernd Metzner, Harriet Harder, Susanna Hegewisch-Becker, Thomas Fischer, Martin Kropff, Hans-Edgar Reis, Mathias Freund, Bernhard Wörmann, Roland Fuchs, Manfred Planker, Jörg Schimke, Hartmut Eimermacher, Lorenz Trümper, Ali Aldaoud, Reza Parwaresch, and Michael Unterhalt

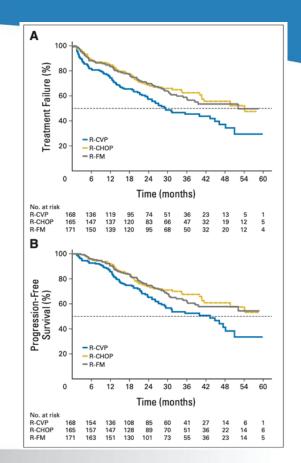
- 428 patients with untreated, advanced-stage FL
- CHOP (n=205) vs R-CHOP (n=223)
- R-CHOP reduced the relative risk for treatment failure by 60% and significantly prolonged the time to treatment failure (P < .001)
- higher ORR (96% vs 90%; P = .011) and prolonged DoR (P = .001)
- OS advantage (P = .016)

Which chemotherapy backbone?

JOURNAL OF CLINICAL ONCOLOGY

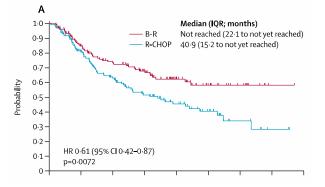
ORIGINAL REPORT

Treatment of Patients With Advanced-Stage Follicular Lymphoma: Results of the FOLL05 Trial Conducted by the Fondazione Italiana Linfomi


Massimo Federico, Stefano Luminari, Alessandra Dondi, Alessandra Tucci, Umberto Vitolo, Luigi Rigacci, Francesco Di Raimondo, Angelo Michele Carella, Alessandro Pulsoni, Francesco Merli, Luca Arcaini, Francesco Angrilli, Caterina Stelitano, Gianluca Gaidano, Matteo Dell'Olio, Luigi Marcheselli, Vito Franco, Sara Galimberti, Stefano Sacchi, and Maura Brugiatelli

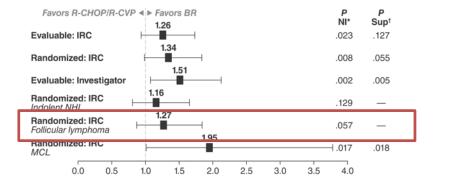
- N=534
- ORR = 88%, 93%, and 91% for R-CVP, R-CHOP, and R-FM (P=.247)
- after a median follow-up of 34 months
- 3-year TTFs = 46%, 62%, and 59% (R-CHOP v R-CVP, P=.003; R-FM v R-CVP, P=.006; R-FM v R-CHOP, P=.763)
- 3-year PFS = 52%, 68%, and 63% (overall P=.011)
- 3-year OS = 95% for the whole series
- Higher rates of grade 3 to 4 neutropenia in R-FM (64%) compared with R-CVP (28%) and R-CHOP (50%; P< .001)

CONCLUSION


- R-CHOP and R-FM were superior to R-CVP in terms of 3-year TTF and PFS
- R-CHOP had a better risk-benefit ratio compared with R-FM

Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial

Which chemotherapy backbone?


Mathias J Rummel, Norbert Niederle, Georg Maschmeyer, G Andre Banat, Ulrich von Grünhagen, Christoph Losem, Dorothea Kofahl-Krause, Gerhard Heil, Manfred Welslau, Christina Balser, Ulrich Kaiser, Eckhart Weidmann, Heinz Dürk, Harald Ballo, Martina Stauch, Fritz Roller, Juergen Barth, Dieter Hoelzer, Axel Hinke, Wolfram Brugger, on behalf of the Study group indolent Lymphomas (StiL)

S blood

Randomized trial of bendamustine-rituximab or R-CHOP/R-CVP in first-line treatment of indolent NHL or MCL: the BRIGHT study

Ian W. Flinn,¹ Richard van der Jagt,² Brad S. Kahl,³ Peter Wood,⁴ Tim E. Hawkins,⁵ David MacDonald,⁶ Mark Hertzberg,⁷ Yiu-Lam Kwan,⁸ David Simpson,⁹ Michael Craig,¹⁰ Kathryn Kolibaba,^{11,12} Samar Issa,¹³ Regina Clementi,¹⁴ Doreen M. Hallman,¹⁴ Mihaela Munteanu,¹⁴ Ling Chen,¹⁴ and John M. Burke^{11,15}

314 patients

«STiL» and «BRIGHT» TRIALS

Rummel M et al, Lancet 2013 Flinn I W et al, *Blood*. 2014; *123*(19), 2944–2952

279 patients

	HR (95% Cl)	p value
Age (years)		
≤60 (n=199)	0·52 (0·33 - 0·79)	0.002
>60 (n=315)	0·62 (0·45 - 0·84)	0.002
LDH concentration		
Normal (n=319)	0·48 (0·34 - 0·67)	<0.0001
Elevated (n=184)	0.74 (0.50–1.08)	0.118
FLIPI subgroup		
Favourable (0–2 risk factors; n=143)	0·56 (0·31 - 0·98)	0.043
Unfavourable (3–5 risk factors; n=127)	0·63 (0.38 - 1·04)	0.068
Starhotels Majestic		

Which chemotherapy backbone?

Impact of immunochemotherapy with R-bendamustine or R-CHOP for treatment naïve advanced-stage follicular lymphoma: A subset analysis of the FOLL12 trial by Fondazione Italiana Linfomi

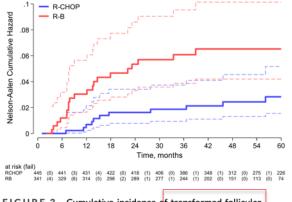
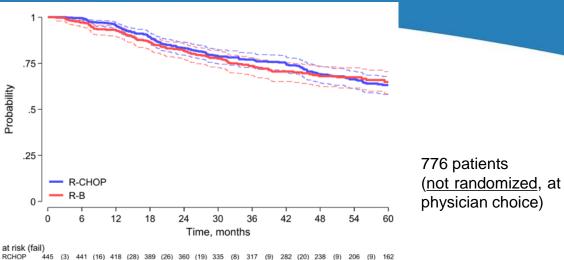
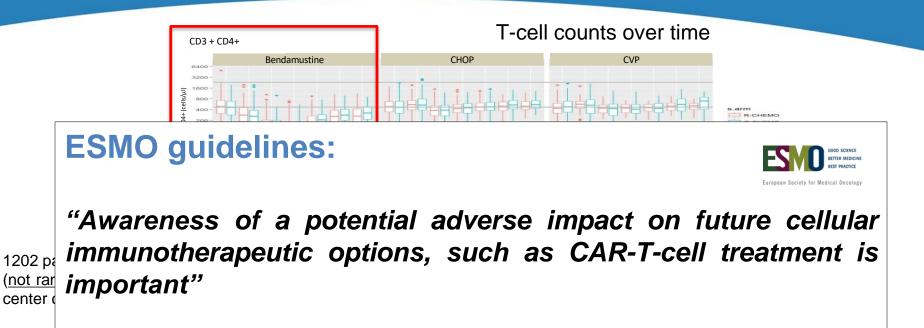



FIGURE 3 Cumulative incidence of transformed follicular lymphoma after end of induction (N = 712) by R-CHOP and RB initial treatment.

Turin, September 21-22, 2023 Starhotels Majestic


121

«[...] R-CHOP and BR showed similar activity and efficacy, but with different safety profiles and longterm events [...] the treating **physician should carefully select the most appropriate chemotherapy regimen for each patient based** on patient's individual characteristics, choices, and risk profile [...]»

341 (10) 327 (14) 306 (21) 278 (15) 258 (13) 239 (12) 204 (8) 166 (5)

Which chemotherapy backbone?

C1/ Mo 0 E	Mo 3 C1/	B C4/ Visit	N N N N N	. C1/ C4/ E	M M M	
Low T-cell count at baseline	R-benda, n=341	G-benda, n=345	R-CHOP, n=203	G-CHOP, n=196	R-CVP, n=57	G-CVP, n=60
CD3+/CD4+ cell count of ≤ 200 /mm ³	36 (12.5%)	36 (11.4%)	12 (7.2%)	9 (5.1%)	2 (4.4%)	4 (7.4%)

Turin, September 21-22, 2023 Starhotels Majestic Hiddemann W et al J Clin Onc 2018

The concept of rituximab maintenance

в

TTNLT Probability (%)

80

60

20

Observation

Censored

Rituximab maintenance

HR, 0.66; 95% CI, 0.55 to 0.78; P < .001

Sustained Progression-Free Survival Benefit of Rituximab Maintenance in Patients With Follicular Lymphoma: Long-Term Results of the PRIMA Study

Ernmanuel Bachy, MD, PhD¹; John F. Seymour, MBBS, PhD²; Pierre Feugier, MD³; Fritz Offner, MD, PhD⁴; Armando López-Guillermo, MD⁵; David Belada, MD, PhD⁴; Luc Xerri, PhD, MD⁷; John V. Catalano, MD⁸; Pauline Brice, MD³; François Lemonnier, MD¹⁰; Alejandro Martin, MD, PhD¹⁻¹; Olivier Cassanovas, MD⁴; Lars M. Pedersen, MD¹⁻³; Yoringicue Dorvaux, MD¹⁺; David Simpson, MD¹⁵; Sirpa Leppa, MD, PhD¹⁻⁵; Jean Gabarre, MD¹⁻⁷; Maria G. da Silva, MD, PhD¹⁻¹; Sylvie Glaisner, MD¹⁻⁵; Joint's Simpson, MD, PhD²⁰; Anne Vekhoff, MD²¹; Tanin Intragumtornchai, MD²²; Steven Le Gouill, MD, PhD¹²; Hervér Tilly, MD²⁰; Jane A. Estell, MD²⁵; Gustavo Milone, MD⁶²; Anne, MD⁶²; Montahn Farhi, MD²²; Hervér Tilly, MD²⁰; Jand Gilles Salles, MD, PhD¹

Anne Vekhoff, MD ²¹ ; Tanin Intragumtornchai, MD ²² ; Steven Le Gouill, MD, PhD ²³ ; Andrew Liste		0 1 2 3 4 5 6 7 8 9 10 11 12	0 1 2 3 4 5 6 7 8 9 10 11 12
Gustavo Milone, MD ²⁶ ; Anne Sonet, MD ²⁷ ; Jonathan Farhi, MD ²⁸ ; Harald Zeuner ²⁹ ; Hervé Tilly, I	ID ³⁰ ; and Gilles Salles, MD, PhD ⁴	Time (years)	Time (years)
Category Subgroup	No. HR 95% CI	No. at risk: 513 415 336 290 251 217 200 155 147 122 41 1 0	No. at risk:
All All - +++	1,018 0.61 0.52 to 0.73	505 445 406 372 333 309 284 231 208 170 67 4 0	505 455 417 384 349 323 301 247 221 174 68 5 0
Age, years < 60 - ≥ 60 - →	394 0.72 0.55 to 0.94	c	D
Sex Female	485 0.74 0.57 to 0.96 533 0.51 0.41 to 0.64	(%) 100 101 80	≈ 100 ≈ 80 -
FLIPI score FLIPI ≤ 1 - FLIPI = 2 - FLIPI ≥ 3 - FLIPI	216 0.53 0.34 to 0.84 370 0.51 0.38 to 0.69 431 0.71 0.56 to 0.91	Alling 80 - Observation Rituximab maintenance	<pre>% 80 - tiling for a construction for a constru</pre>
Induction Rituximab plus CHOP - +++	768 0.57 0.47 to 0.70 222 0.75 0.53 to 1.07 28 0.58 0.16 to 2.07	20 - + Censored HR, 0.71; 95% Cl, 0.59 to 0.86; P < .001 0 1 2 3 4 5 6 7 8 9 10 11 12	20 - Censored HR, 1.04; 95% CI, 0.77 to 1.40; P = .7948 0 1 2 3 4 5 6 7 8 9 10 11 12
Response to induction CR/CRu - +++ PR - ++++	720 0.64 0.52 to 0.79 291 0.54 0.40 to 0.74	Time (years)	Time (years)
	<u> </u>	No. at risk:	No. at risk:
Favors Rituximab Maintenance Favors Obser	vation	513 460 402 557 525 290 274 210 195 165 62 2 0 505 459 432 401 369 341 320 265 241 192 76 5 0	513 501 485 472 460 440 412 319 297 256 91 8 0 505 492 480 464 449 432 407 341 313 261 107 8 0

Observation

Censored

Rituximab maintenanc

HR, 0.61; 95% Cl, 0.52 to 0.73; P < .001

Α

PFS Probability (%)

100

80

60

40

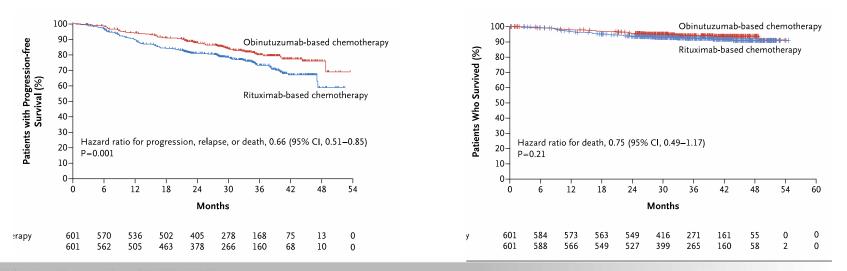
20

«Only» PFS advantage

0 10 11

Turin, September 21-22, 2023 Starhotels Majestic

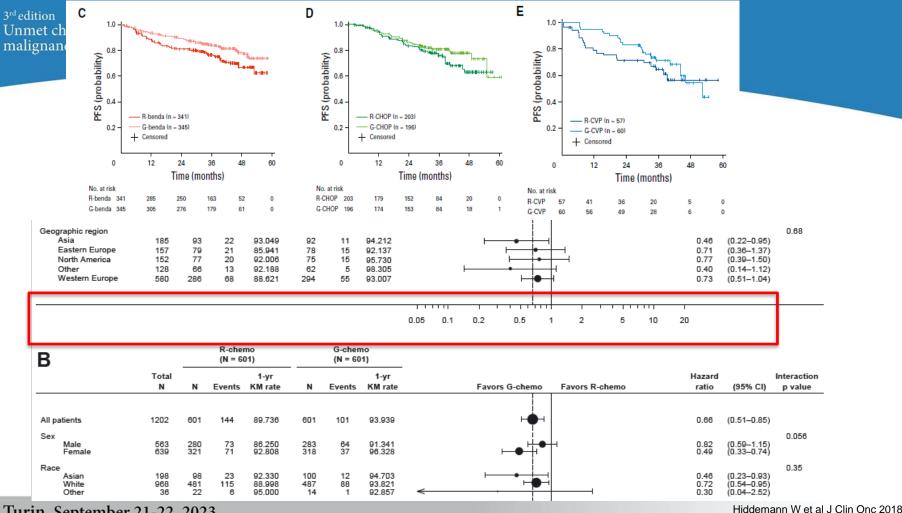
«PRIMA» TRIAL


Bachy E et al, Journal Clin Onc 2019 37:31, 2815-2824

Which anti-CD20?

ORIGINAL ARTICLE

Obinutuzumab for the First-Line Treatment of Follicular Lymphoma

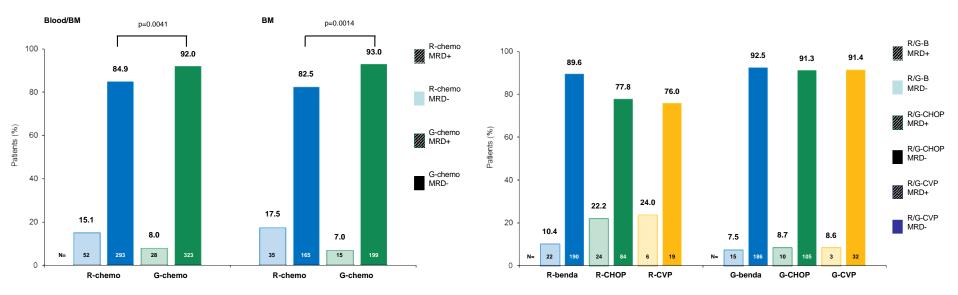

R. Marcus, A. Davies, K. Ando, W. Klapper, S. Opat, C. Owen, E. Phillips, R. Sangha, R. Schlag, J.F. Seymour, W. Townsend, M. Trněný, M. Wenger, G. Fingerle-Rowson, K. Rufibach, T. Moore, M. Herold, and W. Hiddemann N Engl J Med 2017;377:1331-44. DOI: 10.1056/NEJMoa1614598 Copyright © 2017 Massachusetts Medical Society.

Turin, September 21-22, 2023 Starhotels Majestic

«GALLIUM» TRIAL

Marcus R et al, N Engl J Med. 2017;377(14):1331-1344

Turin, September 21-22, 2023 **Starhotels Majestic**


«GALLIUM» TRIAL

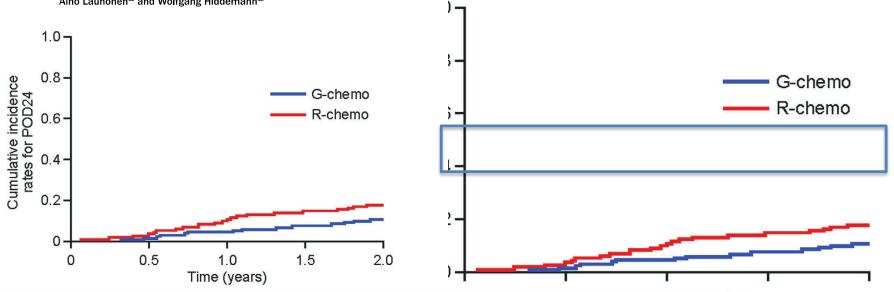
Marcus R et al, N Engl J Med. 2017;377(14):1331-1344

Which anti-CD20?

MRD status by treatment arm at end of induction in blood/BM

Turin, September 21-22, 2023 Starhotels Majestic

«GALLIUM» TRIAL


Courtesy of Christiane Pott

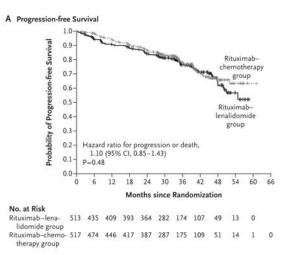
Which anti-CD20?

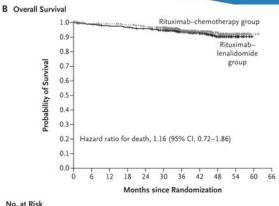
Association of early disease progression and very poor survival in the GALLIUM study in follicular lymphoma: benefit of obinutuzumab in reducing the rate of early progression

John F. Seymour,¹ Robert Marcus,² Andrew Davies,³ Eve Gallop-Evans,⁴ Andrew Grigg,⁵ Andrew Haynes,⁶ Michael Herold,⁷ Thomas IIImer,⁸ Herman Nilsson-Ehle,⁹ Martin Sökler,¹⁰ Ulrich Dünzinger,¹¹ Tina Nielsen,¹² Aino Launonen¹² and Wolfgang Hiddemann¹³

Turin, September 21-22, 2023 Starhotels Majestic

«GALLIUM» TRIAL


Seymour JF. et al., Haematologica 2019


Novel rituximab partners: R² chemo-free?

Rituximab plus Lenalidomide in Advanced Untreated Follicular Lymphoma

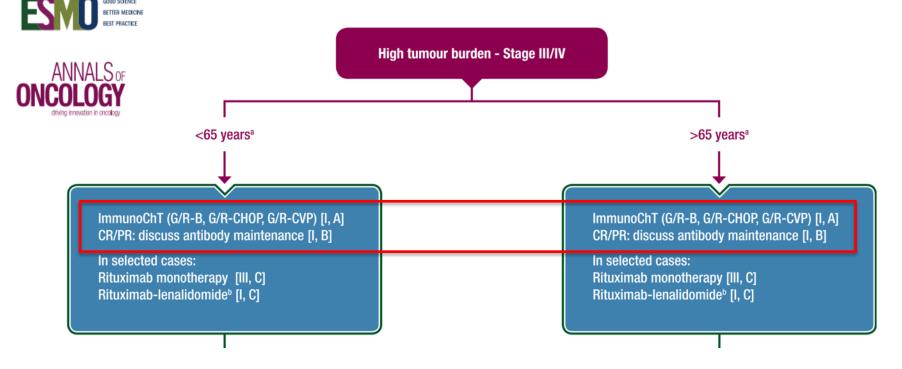
F. Morschhauser, N.H. Fowler, P. Feugier, R. Bouabdallah, H. Tilly, M.L. Palomba, C. Fruchart, E.N. Libby, R.-O. Casasnovas, I.W. Flinn, C. Haioun, H. Maisonneuve, L. Ysebaert, N.L. Bartlett, K. Bouabdallah, P. Brice, V. Ribrag, N. Daguindau, S. Le Gouill, G.M. Pica, A. Martin Garcia-Sancho, A. López-Guillermo, J.-F. Larouche, K. Ando, M. Gomes da Silva, M. André, P. Zachée, L.H. Sehn, K. Tobinai, G. Cartron, D. Liu, J. Wang, L. Xerri, and G.A. Salles, for the RELEVANCE Trial Investigators*

A Progression-free Survival Subgroup	Rituximab– Lenalidomide Group	Rituximab– Chemotherap Group		ard Ratio (95% CI)	
	no. of ever	its/total no.			
Overall	119/513	115/517	Н	•	1.10 (0.85 to 1.43)
Age			A.		
≤60 yr	58/281	55/282	H	•	1.15 (0.79 to 1.66)
>ou yr	01/232	30/233	-		1.00 (0.74 10 1.55)
FLIPI score			1997	- 20 	
0 or 1	14/77	9/76	H	•	2.06 (0.88 to 4.80)
2	37/183	35/191	H	•	1.12 (0.70 to 1.78)
3-5	68/253	67/250	H	н	1.00 (0.72 to 1.41
congest diameter of the longes	it noue				
s6 cm	62/253	58/271	H	-	1.19 (0.83 to 1.71
>6 cm	57/260	53/246	н	H	1.04 (0.71 to 1.51
Sex				1000	
Male	61/251	59/251	H	H	1.02 (0.71 to 1.46
Female	58/262	52/266	H	•	1.23 (0.85 to 1.79
Country					
Other than North America	93/384	92/379	H	н	1.03 (0.77 to 1.38
North America	26/129	19/138	н	•	1.53 (0.84 to 2.76
Disease stage					
l or II	6/30	5/40	H	•	2.23 (0.66 to 7.55)
III or IV	113/483	106/477	H	H	1.06 (0.82 to 1.39)
			0.1 0.2 0.5 1.	0 2.0 5.0 10	2
			Rituximab plus Lenalidomide Better	Rituximab plus Chemotherapy Better	

to, at man												
Rituximab-lena-	513	499	491	486	479	459	312	194	105	24	0	
lidomide group												
Rituximab–chemo- therapy group	517	496	487	481	470	453	298	193	115	32	2	0

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE


Turin, September 21-22, 2023 Starhotels Majestic

«RELEVANCE» TRIAL

Morschhauser F et al, N Engl J Med 2018; 379:934-947

Newly diagnosed and relapsed follicular lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]

M. Dreyling¹, M. Ghielmini², S. Rule³, G. Salles^{4,5}, M. Ladetto⁶, S. H. Tonino⁷, K. Herfarth⁸, J. F. Seymour⁹ & M. Jerkeman¹⁰, on behalf of the ESMO Guidelines Committee^{*}

Turin, September 21-22, 2023 Starhotels Majestic

ESMO Guidelines 2021

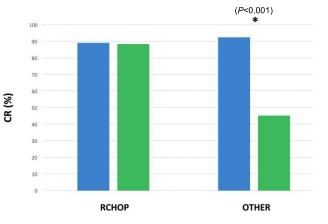
Can we tailor first line therapy on patients risk?

Turin, September 21-22, 2023 Starhotels Majestic

PET-guided first line: **SUVmax**?

Table 1. Key	y studies relating	1 haseline	SUVmax with	outcome in FL
Table 1. Ke	y studies relating	Jugasenne	SOTTINAL WITH	outcome in r L

Reference	Patients, n	Median baseline SUVmax (range)	нт	PFS
PET in PRIMA (retrospective) ⁴¹	58	11.7 (4.6-35.6)	No patients with HT	No association of bSUVmax with PFS (P = 0.53). ROC analysis did not identify an optimal pretreatment SUVmax cutoff with a significant impact on PFS
FOLLCOLL (retrospective) ²⁸	181	10 (3-35; IQR 7-14). No correlation with histologic grade, P = 0.66. Best cutoff on ROC and X-tile analysis SUVmax 9.4	2 patients with HT	SUVmax > 9.4: 3-y PFS 62%, median PFS 78.7 mo. SUVmax < 9.4: 5-y PFS 47%, median PFS 48.7 mo. P = 0.0318. No difference in OS, 93.7% vs 88.4%; P = .15
GALLIUM (prospective) ³¹	549	Range, 3-64; median, 12.4 (8.1-28.0) in HT; median 11.8 (3.1-64.4) in non-HT	15 patients (2.7%) with HT at 5 y	No association of bSUVmax with PFS, Q1 vs Q4; HR, 1.14 (95% CI, 0.72-1.81), P = 0.58
Strati et al (retrospective) ²⁵	346	11 (1.5-42) 52 patients (15%) with SUVmax >18	HT excluded from study population	No effect on PFS if treated with R-CHOP or other CIT. Inferior 8-y OS if SUVmax >18 (65% vs. 89%; P = 0.001)

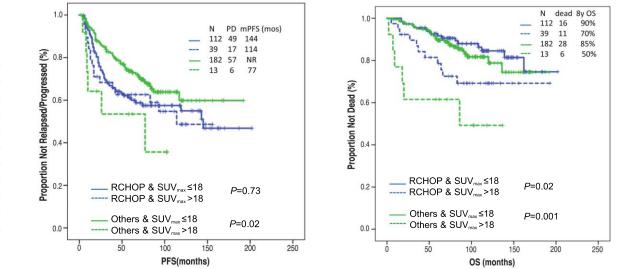

Table 1 Selec	ted clir	nical trials testing the prognostic va	lue of	metabolic tumour vo	olume in	in lymphoma
GALLIUM ¹³⁹	FL	Randomization to obinutuzumab or rituximab plus chemotherapy (bendamustine, CHOP or CVP) plus maintenance with same antibody received during induction in responders	521	SUVmax ≥2.5, 41% of SUVmax and SUVmax assessment	NR	No association of PET-based biomarkers with PFS
Meignan et al. ¹⁰²	FL	Chemo-immunotherapy ^d	185	41% of SUVmax	510 ml	5-year PFS: 33% versus 65%; 5-year OS: 85% versus 95%

Turin, September 21-22, 2023 Starhotels Majestic

Pre-treatment maximum standardized uptake value predicts outcome after frontline therapy in patients with advanced stage follicular lymphoma

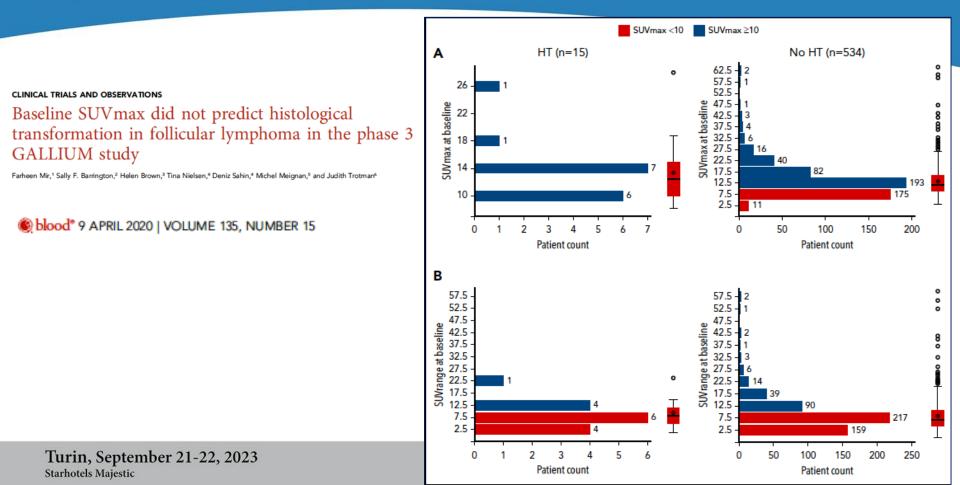
Paolo Strati,¹ Mohamed Amin Ahmed,¹ Nathan H. Fowler,¹ Loretta J. Nastoupil,¹ Felipe Samaniego,¹ Luis E. Fayad,¹ Fredrick B. Hagemeister,¹ Jorge E. Romaguera,¹ Alma Rodriguez,¹ Michael Wang,¹ Jason R. Westin,¹ Chan Cheah,¹ Mansoor Noorani,¹ Lei Feng,² Richard E. Davis¹ and Sattva S. Neelapu¹

¹Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center and ²Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA



PET-guided first line: SUVmax?

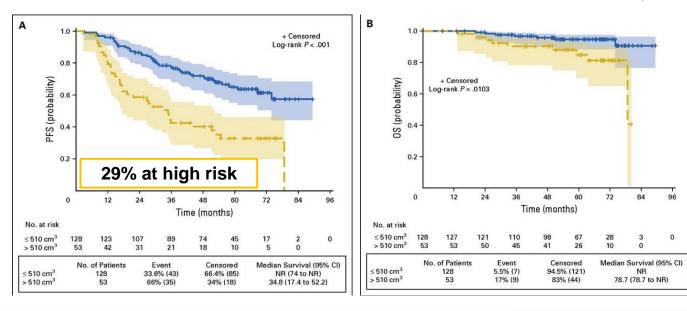
Retrospective analysis of **346 FL** <u>without histological evidence</u> <u>of transformation</u>


lymph node ≥6 cm was the only factor associating with **SUVmax >18** on MV analysis: OR 2.7 (1.3-5.3), p=0.006)

Other therapies: BR 28%, <u>R² 32%</u>, R-FND 12%, <u>R mono 27%</u>

Turin, September 21-22, 2023 Starhotels Majestic Strati P. et al., Haematologica 2020

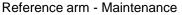
PET-guided first line: **SUVmax**?

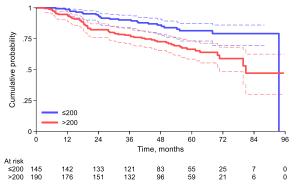

PET-guided first line: TMTV?

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

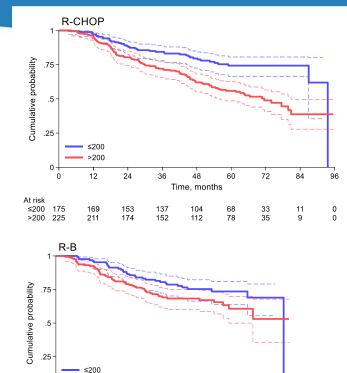
Baseline Metabolic Tumor Volume Predicts Outcome in High–Tumor-Burden Follicular Lymphoma: A Pooled Analysis of Three Multicenter Studies


Michel Meignan, Anne Ségolène Cottereau, Annibale Versari, Loïc Chartier, Jehan Dupuis, Sami Boussetta, Ilaria Grassi, René-Olivier Casasnovas, Corinne Haioun, Hervé Tilly, Vittoria Tarantino, Julien Dubreuil, Massimo Federico, Gilles Salles, Stefano Luminari, and Judith Trotman



Turin, September 21-22, 2023 Starhotels Majestic

Michel Meignan et al. JCO doi:10.1200/JCO.2016.66.9440


PET-guided first line: TMTV?

Experimental arm - response adapted (no maintenance)

Prognostic value of **TMTV** (>200 ml) was independent from main prognostic factors, induction therapy and maintenance with rituximab

>200

12

123

146

24

108

124

36

92

92

48

Time, months

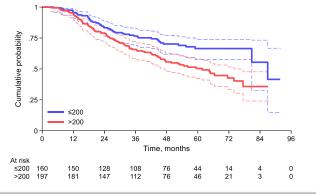
55

60

60

31

27


0

162

At risk

≤200 130

>200

Turin, September 21-22, 2023

Starhotels Majestic

Luminari S. et al., ASH 2022

84

0

0

96

0

0

72

FIL «FOLL12» TRIAL

PET-guided first line: TMTV?

623.MANTLE CELL, FOLLICULAR, AND OTHER INDOLENT B CELL LYMPHOMAS: CLINICAL AND EPIDEMIOLOGICAL NOVEMBER 15, 2022

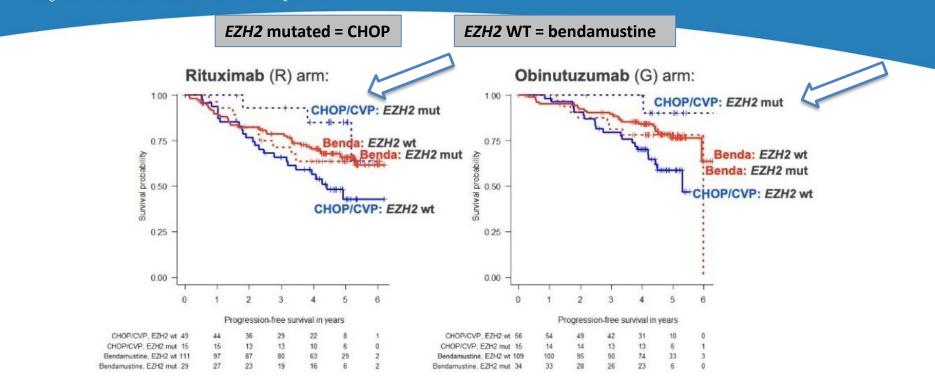
Baseline PET Metabolic Tumor Volume Predicts Outcome in Advanced Follicular Lymphoma Patients Who Received First-Line Immunochemotherapy but Not Those Treated with Lenalidomide-Rituximab in the Phase III Relevance Study

Anne Ségolène Cottereau, Louis Rebaud, Judith Trotman, Pierre Feugier, Loretta J. Nastoupil, Emmanuel Bachy, Ian W. Flinn, Corinne Haioun, Loic Ysebaert, Nancy L. Bartlett, Hervé Tilly, René-Olivier Casasnovas, Romain Ricci, Cedric Portugues, Irène Buvat, Michel Meignan, Franck Morschhauser



Figure 1. PFS according to baseline Total Metabolic Tumor Volume (TMTV) in R-Chemotherapy arm (A) and in R+Lenalidomide arm (B).

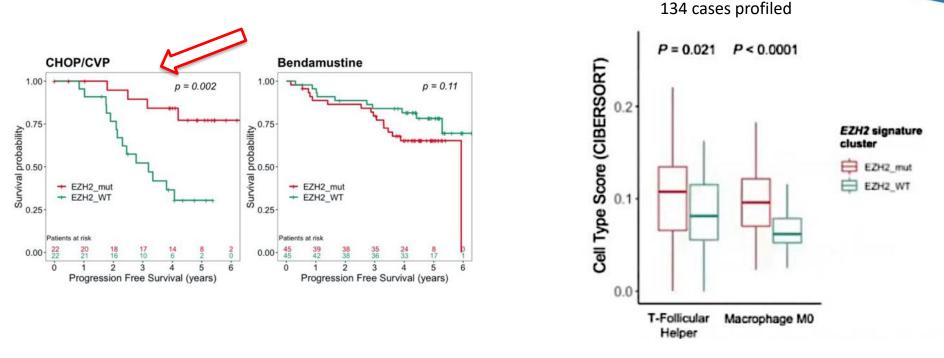
Turin, September 21-22, 2023 Starhotels Majestic


«RELEVANCE» TRIAL

What about **biomarkers**?

Turin, September 21-22, 2023 Starhotels Majestic

EZH2-guided first line?


- Patients receiving CHOP/CVP-based regimens: PFS for EZH2 wt vs mut: HR = 0.25, p = 0.0036
- Patients with EZH2 wt FL: PFS for Benda vs CHOP/CVP: HR = 0.55, p = 0.0023

Turin, September 21-22, 2023 Starhotels Majestic

EZH2 mutations in GALLIUM trial

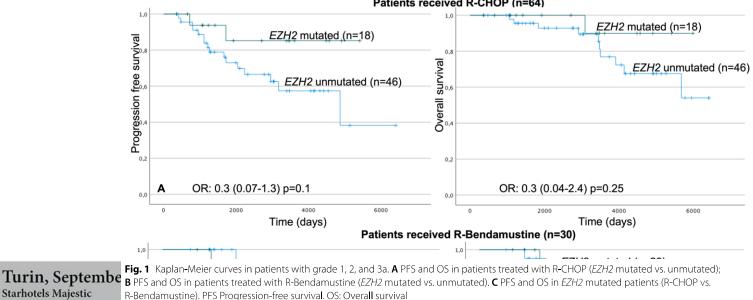
Jurinovic V, et al. ASH 2019

EZH2-guided first line?

Turin, September 21-22, 2023 Starhotels Majestic

EZH2 GEP signature in GALLIUM trial

Passerini V, ASH 2021


EZH2-guided first line?

EZH2 mutations at diagnosis in follicular lymphoma: a promising biomarker to guide frontline treatment

C. Martínez-Laperche^{1,2}, L. Sanz-Villanueva^{1,2}, F. J. Díaz Crespo^{1,3}, P. Muñiz^{1,2}, R. Martín Rojas², D. Carbonell^{1,2}, M. Chicano^{1,2}, J. Suárez-González^{1,4}, J. Menárguez^{1,3}, M. Kwon^{1,2}, J. L. Diez Martín^{1,2,5}, I. Buño^{1,2,4,6} and M. Bastos Oreiro^{1,2*}

Martínez-Laperche et al. BMC Cancer (2022) 22:982 https://doi.org/10.1186/s12885-022-10070-z

BMC Cancer

Patients received R-CHOP (n=64)

check for

Response-guided first line? PET & MRD

CMR MRD + or non CMR MRD -

Non CMR & MRD +

60

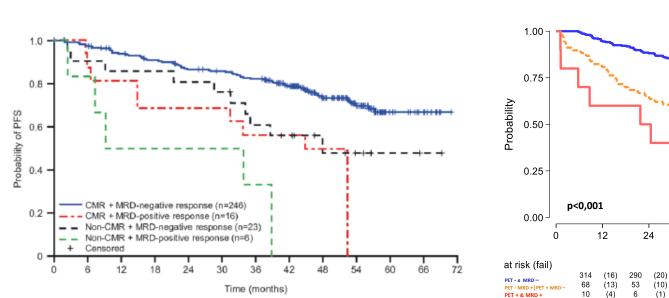
FONDAZIONE ITALIANA

LINFOMI

(2)

(0) (0)

1


0

84

(8) (1) (0) 23 4 0

CMR & MRD -

FIL FOLL12 trial

GALLIUM trial

PFS from EoI stratified by PET and BM MRD results

(19)144 24 1

(2) (1)

48

218 35 2

Time, months

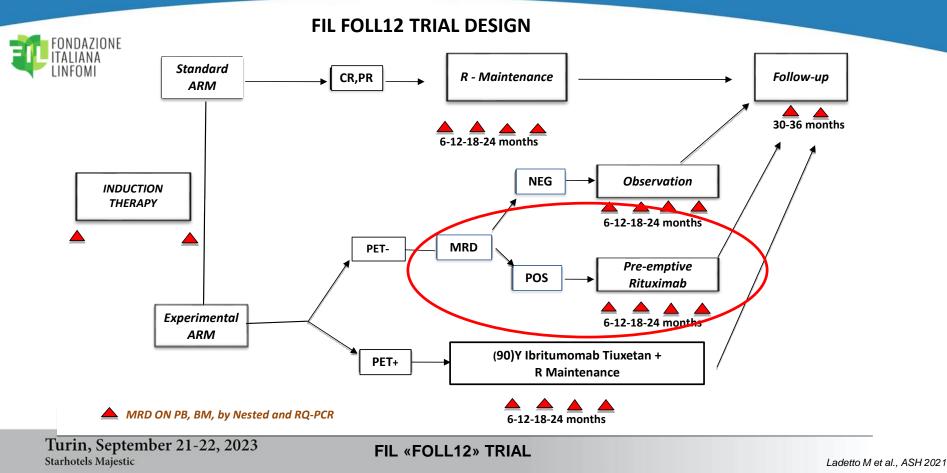
36

262 (15)

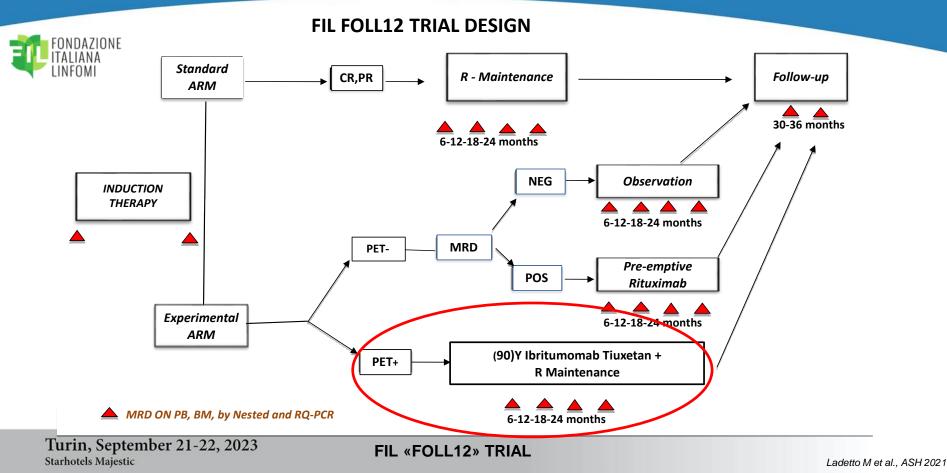
41 (4) (1)

5

Pott C. et al., EHA 2018 Ferrero S. et al., ICML 2023


72

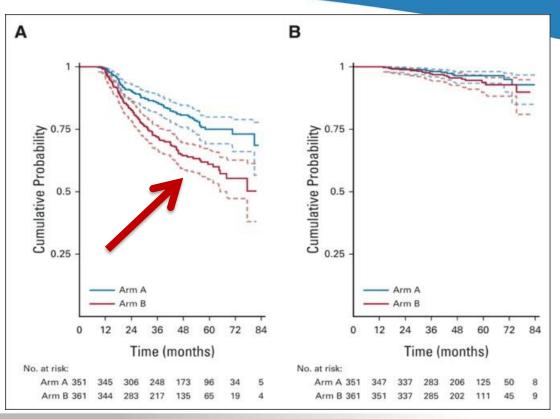
79


(0) (1) 11 0

Turin, September 21-22, 2023 Starhotels Majestic

Response-guided first line? PET & MRD

Response-guided first line? PET & MRD

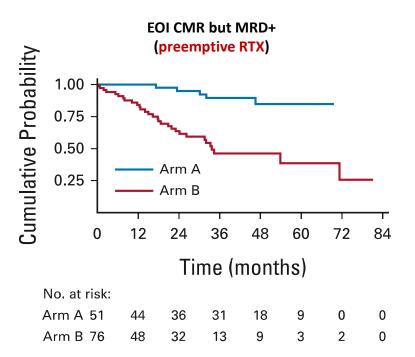

Response-guided first line? PET & MRD

Response-Adapted Postinduction Strategy in Patients With Advanced-Stage Follicular Lymphoma: The FOLL12 Study

Stefano Luminari, MD^{1,2}; Martina Manni, MD¹; Sara Galimberti, MD³; Annibale Versari, MD⁴; Alessandra Tucci, MD⁵; Carola Boccomini, MD⁵; Lucia Farina, MD⁷; Jacopo Olivieri, MD⁸; Luigi Marcheselli, MSe⁹; Luca Guerra, MD^{10,11}; Simone Ferrero, MD¹²; Luca Arcaini, MD¹³; Federica Cavallo, MD¹²; Sofya Kovalchuk, MD¹⁴; Tetiana Skrypets, MD¹¹⁵; Ilaria del Giudice, MD¹⁶; Stephane Chauvie, MD¹⁷; Caterina Patti, MD¹⁸; Caterina Stelitano, MD¹⁹; Francesca Ricci, MD²⁰; Antonello Pinto, MD²¹; Gloria Margiotta Casaluci, MD²²; Vittoro R. Zilioli, MD²³; Anna Merli, MD²⁴; Marco Ladetto, MD^{25,26}; Silvia Bolis, MD²⁷; Vincenzo Pavone, MD²⁸; Annalisa Chiarenza, MD²⁸; Annalisa Arcari, MD³⁰; Antonella Anastasia, MD⁵; Alessandra Dondi, PhD⁹; Donato Mannina, MD³¹; and Massimo Federico, MD¹ on behalf of Fondazione Italiana Linfomi

Journal of Clinical Oncology®

2021



Turin, September 21-22, 2023 Starhotels Majestic

FIL «FOLL12» TRIAL

Response-guided first line? PET & MRD



Turin, September 21-22, 2023 Starhotels Majestic

FIL «FOLL12» TRIAL

Luminari S et al., JCO 2021

What about the future?

Turin, September 21-22, 2023 Starhotels Majestic

Novel approches: **bispecific** antibodies

Supplemental Table. Planned or ongoing registered BsAb studies without published results.

Disease	Setting	Modifiers	Trial ID	Phase	Drug(s)	Histology
Indolent B-NHL	1 st line	Advanced stage, need for therapy	NCT05389293 NCT05207670 NCT05410418 NCT05169658 NCT04792502 NCT04663347	 /	MOSUN MOSUN (SC) MOSUN-pola MOSUN (+ pola and obin if PF MOSUN (+ len if PR) EPCOR-R-len or EPCOR-BR	FL Multiple FL Nultiple FL
		Lym	ptoxicity Activation		Aggressive NHL CR Aggressive NHL PR Indolent NHL CR Indolent NHL PR	
			CD20 CD3 LgG-like Bispecific antibody	0 0 0 0 0 0 0 0 0 0 0 0 0 0	Itanà Eportanà Odovatanà Pinstanà (14.222	
Turin, September Starhotels Majestic	r 21-22, 202	3		Other commo ICANS like syn	Grade 1-2 Grade 3-4 adverse vents AB. Neuropensi, diartea, fatigue, anemia; dome, TS, FMF - rec (-53) adverse to dividue this, reported in sygregets	Falchi L et al, Blood. 2023 Feb 2;141(5):467-480.

623.MANTLE CELL, FOLLICULAR, AND OTHER INDOLENT B CELL LYMPHOMAS: CLINICAL AND EPIDEMIOLOGICAL | NOVEMBER 15, 2022

Subcutaneous Epcoritamab in Combination with Rituximab + Lenalidomide (R²) for First-Line Treatment of Follicular Lymphoma: Initial Results from Phase 1/2 Trial

Lorenzo Falchi, Lori A. Leslie, David Belada, Katerina Kopeckova, Fritz Offner, Joshua Brody, Miguel Canales, Alejandro Martín García-Sancho, Marcel Nijland, P-O Andersson, Farrukh T. Awan, Jacob Haaber Christensen, Kristina Drott, Mats Hellström, Catharina Lewerin, Mayur Narkhede, Sylvia Snauwaert, Björn E Wahlin, Ali Rana, Aqeel Abbas, Liwei Wang, Minh Dinh, Joost S.P. Vermaat, Pau Abrisqueta

[...] the ORR was 90% (26/29), with 69% (20/29) having a CMR as their best OR [...]

Subcutaneous epcoritamab + R^2 demonstrated a **manageable safety profile**, similar to that observed in the R/R setting, with no new safety signals, <u>no ICANS events</u>, and only <u>low-grade CRS events</u>, all of which resolved. This regimen showed encouraging efficacy, based on high response rates, when used as a first-line treatment for FL. These data <u>support further clinical evaluation of epcoritamab + R^2 in previously untreated patients with FL.</u>

Novel approches: EZH2 targeting

RECRUITING

A Study of Tazemetostat With Rituximab and Abbreviated Bendamustine in the Frontline Treatment of High Tumor Burden Follicular Lymphoma

ClinicalTrials.gov ID
 NCT05551936

Sponsor ① Vaishalee Kenkre

Information provided by 10 Vaishalee Kenkre, Big Ten Cancer Research Consortium (Responsible Party)

Last Update Posted 1 2023-05-12

ACTIVE, NOT RECRUITING 🕕

Study of Tazemetostat in Newly Diagnosed Diffuse Large B Cell and Follicular Lymphoma Patients Treated by Chemiotherapy (Epi-RCHOP)

ClinicalTrials.gov ID

NCT02889523

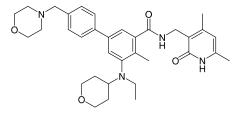
Sponsor 1 The Lymphoma Academic Research Organisation

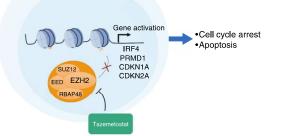
Information provided by
The Lymphoma Academic Research Organisation (Responsible Party)

NOT YET RECRUITING

Tazemetostat and Mosunetuzumab in Untreated Follicular Lymphoma

ClinicalTrials.gov ID


NCT05994235


Sponsor
 Weill Medical College of Cornell University

Information provided by
Ueill Medical College of Cornell University (Responsible Party)

Last Update Posted 1 2023-09-07

Turin, September 21-22, 2023 Starhotels Majestic Falchi L et al, Blood. 2023 Feb 2;141(5):467-480.

How I (Simone Ferrero, MD) treat high-risk follicular lymphoma in first line?

- I take in consideration clinical prognostic indexes (FLIPI, ...) and PET parameters (SUV max)
- I always try to rule out an histological transformation (**surgical biopsy**, whenever possibile)
- I still cannot rely on clinically meaningful baseline biomarkers (damn!)
- I usually opt for **Ga101**-chemo in FLIPI intermediate and high-risk patients (Gallium)
- I usually prefer R/G-**CHOP** for FIT patients and G-CVP for UNFIT ones (benda caveat)
- I would like to use R² more often (not reimbursed in Italy for the first line)
- I usually go for 24-months **anti-CD20 maintenance** for all responding patients
- I monitor MRD only in clinical trial (so far)
- I look forward to integrating novel drugs in first line for high-risk patients (i.e. bispecific abs)

Acknowledgements

Division of Hematology (Prof. B. Bruno)

Lymphoma Group Molecular Biology Lab

Turin, September 21-22, 2023 Starhotels Majestic

simone.ferrero@unito.it